Skip Ribbon Commands
Skip to main content
  • Prof.  Avital Shurki
Prof.  Avital Shurki
Research Interests
The main objective of the research is to understand fundamental questions in chemistry and biochemistry using different computational methods. It is a theoretical research, which applies quantum-mechanical (QM) approaches, molecular mechanical (MM) approached as well as hybrid QM/MM computational schemes. Several specific projects are on going:
Method Development
The 2013 Nobel prize in Chemistry, which was awarded for "the development of multiscale models for complex chemical systems", has highlighted the great impact of computational methods in the field of  biochemistry. Recent years have witnessed significant contributions of computational methods both  as tools for understanding the molecular details of biological processes as well as predictive tools. For example, computational strategies combined with experiments proved to be very successful for enzyme engineering in recent years. Yet, the rate enhancement of the enzymatic reaction resulting from these strategies is usually relatively modest and we would like to improve it.
One of the major requirements for the successes of computational methods is the reliability of the results and the insights gained from them. Thus, we have developed a new hybrid Quantum-Mechanics Molecular Mechanics (QM/MM) method where the QM part is treated by ab-initio Valence Bond (VB)  theory. This VB/MM method has the advantages of the well established Empirical VB (EVB) methodology but provides better accuracy. In it’s simplest form, VB theory is used on a daily basis by all chemists, as it constitutes the “language” of chemical drawings (Lewis structures, resonance structures etc). The VB/MM method we developed therefore keeps these insights of VB but allows calculations of processes within proteins without the requirement to parameterize the QM part. Further development of the method however is required as VB is currently limited to relatively small systems. We plan to push VB to  the limits and define its current status while trying to extend it to larger and more complex systems.
It is our hope that one of the outcomes of this work will be the ability to utilize VB/MM and provide VB analysis which will be used for better understanding of any biological reaction.
Enzyme Design
Computer based enzyme design, which involves creating an enzyme from scratch to catalyze any pre-chosen reaction is one of the greatest challenges available to date. Thus far the emphasis in that field was placed mainly on stabilizing the structure of the protein and little effort was invested on the actual  catalysis. We are developing a new concept to design reactivity which is base on valence bond (VB) methodology. We have developed a methodology that provides better  description of enzyme catalysis by analyzing the chemical role of each amino acid. The method was shown to facilitate predictions of "correct" rate enhancing mutations.
The scheme was tested and proved to be working in the first step of the conversion of methylchloride to  alcohol in haloalkane dehalogenase, leading to two successful predictions with considerable calculated  rate enhancement. We are currently working on substrates that their conversion into alcohols leads to  two different enentiomers, while trying to enhance both the rate and the selectivity of the enzyme towards one enentiomer. We plan to study various other enzymatic reactions (e.g., Ras/RasGAP) with  mutations that are known to impair the reaction and try to suggest new mutations for improved catalytic activity. Our ultimate goal is to be able eventually to design any enzyme at will.
Copper ions do not appear in a free aquated form in biological systems due to their possible toxicity. Therefore, another project focuses on copper metallochaperones proteins found to be responsible for carrying copper(I) ions to the designated locations while preventing undesired and toxic chemistry. This project involves studying the mechanism of copper binding and exchange by these proteins using computational methods and tries to understand what prevents the copper from leaving its metallochaperone to the solution.
Mechanistics Studies
We study the mechanistic details of various different systems including the hydrolysis of GTP vy various G-Proteins, hydrolysis of Organo-phosphate esters by ButyrylColineEsterase and its mutants, Conversion of Halo-alkanes into Alcohols in Haloalkane-Dehalogenaze etc.
An unexpected error has occurred.
Group Members
MSc and PhD Students:
Etai Karach
PostDoctoral Fellows:
Rajapandian Varatharaj
LAB Phone Numbers:
+972-2-765-7497 (87497)
+972-2-765-7351 (87351)
+972-2-765-7495 (87495)
Available positions
A position is available for excellent Ph.D. students and postdocs interested to study biological systems using theoretical methods. The projects will focus on developement of new  approach for enzyme design, mechanisms of enzymatic catalysis or on the development of new tools for such studies.
The position is available immediately. Applicants are required to submit a resume and copy of their studies record.
Curriculum Vitae​
Date of Birth:
5th July,1970
Marital status:
Married (+2)
Permanent address:
Nikanor 35, Jerusalem, 93307, Israel
E-mail address:
1990 – 1993
B.Sc. in Chemistry, The Hebrew University of Jerusalem, Israel (Magma Cum Laude)
1993 – 1999
Ph.D. in Quantum Chemistry, The Hebrew University of Jerusalem, Israel with Prof. Sason Shaik
2000 – 2003
Postdoctoral Fellow in Chemistry and Biochemistry, University of Southern California with Prof. Arieh Warshel (2013 Nobel laureate in Chemistry)
Teaching assistant in the Chemistry Department, Faculty of Science
Lecturer at the School of Pharmacy, Faculty of Medicine
Senior Lecturer at the School of Pharmacy, Faculty of Medicine
Tenured at the School of Pharmacy, Faculty of Medicine
Associate Professor at the School of Pharmacy, Faculty of Medicine
Head of the Medicinal Chemistry Discipline, Institute for Drug Research
Member of the Institute for Drug Research Planning and Development Committee
Chair of the Committee for Promotion of Lab Technicians in the Faculty of Medicine
Member of the School of Pharmacy Teaching Committee
Member in the committee for interviewing and accepting medicine students
Member of the academic Committee of the Alex Grass center for Drug Design and Synthesis of Novel Therapeutics
Editorial boards
Member of the Editorial Board of Scientific Reports (Nature publisher)​
  1. E. Kozela, C. Haj, L. Hanuš, M. Chourasia, A. Shurki, A. Juknat, N. Kaushansky, R. Mechoulam, Z. Vogel (2016) "HU-446 and HU-465, derivatives of the non-psychoactive cannabinoid cannabidiol, decrease the activation of encephalitogenic T cells"Chemical Biology & Drug Design, 87:143-53.
  2. A. Sharir-Ivry, R. Varatharaj, A. Shurki, (2015) "Valence Bond and Enzyme Catalysis: A Time to Breakdown and a Time to Buildup", Chem. - Eur. J., 21:7159-7169
  3. R. Smoum, S. Baraghithy, M. Chourasia, A. Breuer, N. Mussai, M. Attar-Namdar, N. Kogan, B. Raphael, D. Bolognini, M. Grazia Cascio, Pietro Marini, R. Pertwee, A. Shurki, R. Mechoulam, I. Bab (2015) "CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: an inverse relationship between binding affinity and biological potency" Proc. Natl. Acad. Sci. U.S.A., 112:8774–8779
  4. A. Shurki, E. Derat,A. Barrozo, L. Kamerlin, (2015) "How Valence Bond can help you understand your (bio)chemical reaction?" Chem. Soc. Rev., 44:1037–1052 review article (cover)
  5. A. Sharir-Ivry, R. Varatharaj, A. Shurki, (2015) "Challenges within the Linear Response Approximation When Studying Enzyme Catalysis and Effects of Mutations" J. Chem. Theory Comput., 11:293–302
  6. A. Shurki, A. Sharir-Ivry, (2014) "Valence-Bond Based Hybrid Quantum Mechanics Molecular Mechanics Approaches and Proper Inclusion of the Effect of the Surrounding", Isr. J. Chem., 54:1189–1204 review article (2.561; 47/148;0)
  7. Y. Wolanov, A. Shurki, P. V. Prikhodchenko, T. A. Tripol'skaya, V. V. Novotortsev, R. Pedahzur, O. Lev, (2014) "Aqueous stability of alumina and silica perhydrate hydrogel: Experiments and computations", Dalton Trans., 43:16614-16625 (cover)
  8. T. Ansbacher, M. Chourasia, A. Shurki, (2013) "Copper-chaperones with dicoordinated Cu(I) - unique protection mechanism", Proteins: Struct., Funct., Bioinf., 81:1411–1419
  9. T. Ansbacher, A. Shurki (2012) "Predicting Coordination Number within Copper Chaperones: Atox1 as Case Study" J. Phys. Chem. B, 116:4425-4432
  10. T. Ansbacher, H. K. Srivastava, T. Stein, R. Baer, Maarten Merkx, A. Shurki (2012) "Calculation of Transition Dipole Moment in Fluorescent Proteins–Towards Efficient Energy Transfer" Phys. Chem. Chem. Phys. 14:4109-4117
  11. M. Amitay, A. Shurki, (2011) “Hydrolysis of Organophosphate Compounds by Mutant Butyrylcholinesterase – A Story of Two Histidines” Proteins: Struct., Funct., Bioinf., 79:352-364
  12. A. Sharir-Ivry, T. Shnerb, M. Strajbl, A. Shurki (2010) “VB/MM Protein Landscapes: ab initio VB/MM Study of the SN2 Reaction in Haloalkane Dehalogenase” J. Phys. Chem. B, 114: 2212–2218
  13. M. Amitay, A. Shurki, (2009) “The Structure of G117H Mutant of Butyrylcholinesterase: Nerve Agents Scavenger” Proteins: Struct., Funct., Bioinf., 77: 370-377
  14. H. K. Srivastava, A. Al A. Al Quntar, A. Azab, M. Srebnik, A. Shurki, (2009) "A Comparison of Amine-Induced Cyclization of 6-Chloro-1-hexynylphosphonate and Isobutyl 7-Chlorohept-2-ynoate" Tetrahedron, 65:4389-4395
  15. T. Ansbacher, H. K. Srivastava, J. M. L. Martin, A. Shurki (2009) “Can DFT methods Correctly and Efficiently Predict the Coordination Number of Copper(I) Complexes? A case Study” J. Comput. Chem., 31: 75-83
  16. A. Sharir-Ivry, A. Shurki (2008) “A VB/MM View of the Identity SN2 Valence Bond State Correlation Diagram in Aqueous Solution” J. Phys. Chem. A, 112:13157-13163
  17. A. Sharir-Ivry, A. Shurki (2008) “VB/MM - The Validity of the Underlying Approximations" J. Phys. Chem. B 112: 12491-12497
  18. A. Sharir-Ivry, H. A. Crown, W Wu, A. Shurki (2008) “Density Embedded VB/MM: A Hybrid ab-initio VB/MM with Electrostatic Embedding” J. Phys. Chem. A 112:2489 -2496
  19. T. Shnerb, N. Lin, A. Shurki (2007) “What is the Role of the Helical Domain of Gsα in the GTPase Reaction” Biochemistry, 46:10875-10885
  20. A. Al A. Al Quntar, H. K. Srivastava, M. Srebnik, A. Melman, R. Ta-Shma A. Shurki (2007) “Formation of Diethyl 2-Amino-1-cyclopentenylphosphonates – Simple Synthesis and Unique Mechanism” J. Org. Chem. 72:4932-4935
  21. A. Shurki, (2006) “Valence Bond – Rebirth of the Phoenix or Relic from the Stone Age” Theor. Chem. Acc., 216:253-261. invited (2.143; 70/136; 7)
  22. A. Shurki, H. Crown (2005) “Hybrid ab-initio VB/MM method – A Valence Bond Ride through Classical Landscapes” J. Phys. Chem. B, 109:23638 – 23644
  23. A. Shurki, A. Warshel, (2004) “Why does the Ras Switch “Break” By Oncogenic Mutations?” Proteins: Struct., Funct., Bioinf., 55:1-10
  24. A. Shurki, M. Štrajbl, C. N. Schutz, A. Warshel, (2004). "Electrostatic Basis for Bioenergetics", Methods Enzymol., 380:52-84. review article
  25. M. Štrajbl, A. Shurki, M. Kato, A. Warshel, (2003) “The apparent NAC effect in chorismate mutase reflects electrostatic transition state stabilization” J. Am. Chem. Soc., 125:10228-10237
  26. M. Štrajbl, A. Shurki, A. Warshel, (2003) “Converting conformational changes to electrostatic energy in molecular motors: The energetics of ATP synthase” Proc. Natl. Acad. Sci. U. S. A., 100:14834-14839
  27. A. Shurki, A. Warshel, (2003). “Structure/Function Correlations of Enzymes using MM, QM/MM and Related Approaches; Methods, Concepts, Pitfalls and Current Progress”, Adv. Protein Chem., Vol. 66 Protein Simulations, 249-313. review article
  28. A. Shurki, P. C. Hiberty, F. Dijkstra, S. Shaik, (2003). “Aromaticity and Antiaromaticity: What Role Do Ionic Configurations Play in Delocalization and Induction of Magnetic Properties?” J. Phys. Org. Chem., 16:731-745.
  29. A. Shurki, M. Štrajbl, J. Villà, A. Warshel, (2002). “How Much Do Enzymes Really Gain by Restraining Their Reacting Fragments?”  J. Am. Chem. Soc., 124:4097-4107
  30. S. Shaik, A. Shurki, D. Danovich, P. C. Hiberty, (2001). "A Different Story of π-Delocalization ― The Distortivity of π-Electrons and Its Chemical Manifestations." Chem. Rev., 101:1501-1540.  review article
  31. W. Wu, D. Danovich, A. Shurki, S. Shaik, (2000).  “Using Valence Bond Theory to Understand Electronic States: Application to the Hidden Excited State (21Ag) of C2nH2n+2 (n=2-14) Polyenes” J. Phys. Chem. A 104:8744-8758
  32. J. M. Galbraith, A. Shurki, S. Shaik, (2000). “A Valence Bond Study of the Bonding in First Row Transition Metal Hydride Cations: What Energetic Role Does Covalency Play?” J. Phys. Chem. A 104:1262-1270
  33. S. Shaik, A. Shurki, (1999). "Valence Bond Diagrams and Chemical Reactivity", Angew. Chem., 111:616-657, Angew. Chem., Int. Ed., 38:586-625. review article (cover)
  34. A. Shurki, P. C. Hiberty, S. Shaik, (1999). "Charge-Shift Bonding in Group IVB Halides: A Valence Bond Study of MH3-Cl (M=C, Si, Ge, Sn, Pb) Molecules" J. Am. Chem. Soc., 121:822-834
  35. A. Shurki, S. Shaik, (1998). "The perfectly resonating state: a chemical model for the transition state" J. Mol. Struct.: THEOCHEM 424:37-4
    * The work was Reviewed and highlighted in C&E News, Nov 3, 1997, in "Science/Technology Concentrates"
  36. S. Shaik, A. Shurki, D. Danovich, P. C. Hiberty, (1997). "A Different Story of benzene", Proceedings of the WATOC'96 Conference, July 7-14, 1996, Jerusalem., J. Mol. Struct.: THEOCHEM 398-399:155-167. review article
  37. Shurki, S. Shaik, (1997). "The Distortive Tendency of Benzene π electrons: How is it Related to Structural Observations?" Angew. Chem., 109:2322-2324, Angew. Chem., Int. Ed. Engl., 36:2205-2208
  38. S. Shaik, A. Shurki, D. Danovich, P. C. Hiberty, (1996). "Origins of the exalted b2u frequency in the first exited state of benzene" J. Am. Chem. Soc., 118:666-671
  39. P. C. Hiberty, D. Danovich, A. Shurki, S. Shaik, (1995). "Why does benzene possess a D6h symmetry? A quasiclassical state approach for probing π-bonding and delocalization energies" J. Am. Chem. Soc., 117:7760-7768
  40. N. Muskal, I. Turyan, A. Shurky, D. Mandler, (1995). "Chiral Self-Assembled Monolayers" J. Am. Chem. Soc., 117:1147-1148
website by Bynet Software Systems