Skip Ribbon Commands
Skip to main content
  • Prof.  Nayef Jarrous
Prof Nayef Jarrous
Research Interests
We study the biosynthesis of transfer RNA (tRNA) molecules, which serve as adaptors in transferring the genetic information from mRNA to protein. Specifically, we investigate transcription of human tRNA genes by RNA polymerase III (Pol III) and processing and splicing of newly transcribed precursor tRNAs.
Processing of precursor tRNA requires ribonuclease P (RNase P), an essential ribonucleoprotein enzyme. Biochemical purification analyses of nuclear RNase P from human cells have revealed that this large ribonucleoprotein complex has an RNA subunit, termed H1 RNA, and at least ten distinct protein subunits. We have characterized many of these protein subunits and reconstituted the endonucleolytic activity of RNase P in the processing of precursor tRNA in vitro by the use of H1 RNA and recombinant protein subunits. The roles of H1 RNA and its protein components in RNA-based catalysis and substrate recognition are being further investigated.
More recent discoveries from our laboratory reveal that a form of human RNase P is required for transcription of small noncoding RNA genes by Pol III. Pol III transcribes an expanding number of genes, including tRNA, 5S rRNA, SRP RNA, 7SK RNA and U6 snRNA genes. The noncoding RNA transcripts of these genes participate in fundamental biological processes, such as transcription, mRNA splicing, and translation. RNase P associates with initiation complexes of Pol III, known to be controlled by proto-oncogenes and tumor suppressor genes, and binds to chromatin of tRNA and 5S rRNA genes in a cell cycle-dependent manner. Ongoing research focuses on the elucidation of the molecular mechanisms by which RNase P exerts its role in distinct types of initiation complexes of Pol III and how transcription and processing of nascent precursor tRNAs are coordinated.
An additional area of research concerns the molecular designing and use of RNase P for inactivation of expression of human genes associated with aging and cancer. This research led us to the discovery that RNase P and Pol III respond to cessation of replication progression and DNA damage that cause mitotic catastrophe and cell death of cancer cells. Moreover, through collaborative study, we have shown that a form of human RNase P is involved in DNA repair of double-stranded breaks (DSBs) via the homology-directed repair pathway.
An unexpected error has occurred.
Recent Projects
  • Biochemical studies of catalytic ribonucleoprotein complexes of human RNase P
  • Role of human RNase P ribonucleoproteins in small noncoding RNA gene transcription by RNA polymerase III
  • Nuclear RNase P, DNA damage, aging, and cancer
An unexpected error has occurred.
Lab Members
Natalie Orlovetskie
Raphael Serruya
Dr. Aravind Ramanathan
Dr. Dhivikar Mani
An unexpected error has occurred.
Selected Publications
Gopalan V., Jarrous N., and Krasilnikov A.S. 2017. Chance and necessity in the evolution of RNase P. RNA, in press.
Jarrous N. 2017. Roles of RNase P and its subunits. Trends Genet. 33, 594-603.
Abu-Zhayia E.R., Khoury-Haddad H., Guttmann-Raviv N., Serruya R., Jarrous N., and N. Ayoub. 2017. A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks. Sci. Rep. 7, 1002.
Orlovetskie N., Serruya R., Abboud-Jarrous G., and N. Jarrous. 2017. Targeted inhibition of WRN helicase, replication stress and cancer. BBA Reviews on Cancer. 1867, 42-48.
Hitrik A., Abboud G., Orlovetskie N., Serruya R. and N. Jarrous. 2016. Targeted inhibition of WRN helicase by external guide sequence and RNase P RNA. BBA-Gene Regulatory Mechanisms 1859, 572-580.
Serruya R., Orlovetskie N., Reiner R., Dehtiar-Zilber Y., Wesolowski D., Altman S., and N. Jarrous. 2015. Human RNase P ribonucleoprotein is required for formation of initiation complexes of RNA polymerase III. Nucleic Acids Res. 43, 5442-5450.
Reiner R., Alfiya-Mor N., Berrebi-Demma M., Wesolowski D., Altman S., and N. Jarrous. 2011. RNA binding properties of conserved protein subunits of human RNase P. Nucleic Acids Res. 39, 5704-5714.
Jarrous N. and V. Gopalan. 2010. Archaeal/eukaryal RNase P: subunits, functions and RNA diversification. Nucleic Acids Res. 38, 7885-7894.
Reiner R., Krasnov-Yoeli N., Dehtiar Y., and N. Jarrous. 2008. Function and assembly of a chromatin-associated RNase P that is required for efficient transcription by RNA polymerase I. PLoS One 3, e4072.
Jarrous N. and R. Reiner. 2007. Human RNase P: a tRNA processing enzyme and transcription factor. Nucleic Acids Res. 35, 3519-3524.
Reiner, R., Ben-Asouli, Y., Krilovetzky, I., and N. Jarrous. 2006. A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription. Genes & Dev. 20, 1621-1635.
Mann H., Ben-Asouli Y., Schein A., Moussa S., and N. Jarrous. 2003. Eukaryotic RNase P: role of RNA and protein subunits of a primordial catalytic ribonucleoprotein in RNA-based catalysis. Mol. Cell 12, 925-935.
website by Bynet Software Systems