Skip Ribbon Commands
Skip to main content
Predicting oral druglikeness by iterative stochastic elimination
Author: Rayan, A., Marcus, D., Goldblum, A.
Source: Journal of chemical information and modeling, 50(3), 437-45, 2010
Abstract: Integration of computational methods in the early stages of drug discovery has been one of the key trends in the pharmaceutical industry. Starting with high quality drug candidates should ultimately minimize clinical attrition rates and give rise to higher success rates. In this paper, we present a novel approach for indexing oral druglikeness of compounds. With the Iterative Stochastic Elimination (ISE) Algorithm, we distinguish between orally available drugs and nondrugs by generating sets of optimized descriptors' ranges, each set constituting a "filter". We delineate in this paper how to produce an ensemble of best k-descriptor sets out of the huge number of possibilities, and how to construct a "filter bank" that retains diverse filters by clustering. Finally, we define the "orally bioavailable drug-like" character of individual molecules by combining the filters into an "Orally Bioavailable Druglike Index" (OB-DLI) which may be used to prioritize molecules in databases and discuss its uses in several potential applications. The predictive power with sets of 4-6 descriptors is high (i.e., one filter of 5 descriptors retrieved 81% true positives and >77% true negatives). Thus, OB-DLI has advantages over binary decisions (that use only one filter) not only in raising discriminative power but also in ranking drug candidates according to their chance to be successful oral drugs. We demonstrate the ability of our approach to discover molecular entities with the required property, orally bioavailable drug likeness, that are structurally dissimilar to those of the training set. Comparison of this ISE application to some of the current main methods for classification reveals that our approach has >13% improvement in the Matthews Correlation Coefficient, which measures the success of identifying true and false positives and negatives. %Z Rayan, Anwar Marcus, David Goldblum, Amiram United States J Chem Inf Model. 2010 Mar 22;50(3):437-45.
website by Bynet Software Systems