check
School of Pharmacy

About the school


The School of Pharmacy at the Hebrew University, one of the world leaders in pharmacist training and basic research in the pharmaceutical sciences, was established in 1953.
The school prepares its graduates to practice the pharmacy profession, provides them with a scientific and professional foundation, and offers higher studies in pharmacology, medicinal chemistry and pharmacy sciences (M.Sc. and Ph.D.), as well as doctoral studies in clinical pharmacy (Pharm.D.).
Graduates of the school are integrated in community pharmacy (community pharmacies, private and institutional), clinical pharmacy (hospitals and health funds), the pharmaceutical industry, the biological, chemical and biotechnology industries, the pharmacy administration and science and research institutions in Israel and abroad.
The school conducts extensive scientific research in the fields of pharmaceutical sciences and life sciences, and dozens of articles are published each year in the leading press in the world of science.
The School of Pharmacy is part of the Faculty of Medicine, located on the Ein Kerem campus of the Hebrew University and works closely with physicians and researchers from Hadassah Hospital.
 

Read more >>

Events

All events >>

Recent Publications

Nethanel Friedman, Dagan, Arie , Elia, Jhonathan , Merims, Sharon , and Benny, Ofra . 2021. Physical Properties Of Gold Nanoparticles Affect Skin Penetration Via Hair Follicles. Nanomedicine: Nanotechnology, Biology, And Medicine, 36. doi:10.1016/J.NANO.2021.102414. Abstract
Drug penetration through the skin is significant for both transdermal and dermal delivery. One mechanism that has attracted attention over the last two decades is the transport pathway of nanoparticles via hair follicle, through the epidermis, directly to the pilosebaceous unit and blood vessels. Studies demonstrate that particle size is an important factor for drug penetration. However, in order to gain more information for the purpose of improving this mode of drug delivery, a thorough understanding of the optimal physical particle properties is needed. In this study, we fabricated fluorescently labeled gold nanoparticles (GNP) with a tight control over the size and shape. The effect of the particles' physical parameters on follicular penetration was evaluated histologically. We used horizontal human skin sections and found that the optimal size for polymeric particles is 0.25 $μ$m. In addition, shape penetration experiments revealed gold nanostars' superiority over spherical particles. Our findings suggest the importance of the particles' physical properties in the design of nanocarriers delivered to the pilosebaceous unit.
Yoel Goldstein, Spitz, Sarah , Turjeman, Keren , Selinger, Florian , Barenholz, Yechezkel , Ertl, Peter , Benny, Ofra , and Bavli, Danny . 2021. Breaking The Third Wall: Implementing 3D-Printing Technics To Expand The Complexity And Abilities Of Multi-Organ-On-A-Chip Devices. Micromachines, 12, 6. doi:10.3390/MI12060627. Abstract
The understanding that systemic context and tissue crosstalk are essential keys for bridg-ing the gap between in vitro models and in vivo conditions led to a growing effort in the last decade to develop advanced multi-organ-on-a-chip devices. However, many of the proposed devices have failed to implement the means to allow for conditions tailored to each organ individually, a crucial aspect in cell functionality. Here, we present two 3D-print-based fabrication methods for a generic multi-organ-on-a-chip device: One with a PDMS microfluidic core unit and one based on 3D-printed units. The device was designed for culturing different tissues in separate compartments by integrating individual pairs of inlets and outlets, thus enabling tissue-specific perfusion rates that facilitate the generation of individual tissue-adapted perfusion profiles. The device allowed tissue crosstalk using microchannel configuration and permeable membranes used as barriers between individual cell culture compartments. Computational fluid dynamics (CFD) simulation confirmed the capability to generate significant differences in shear stress between the two individual culture compartments, each with a selective shear force. In addition, we provide preliminary findings that indicate the feasibility for biological compatibility for cell culture and long-term incubation in 3D-printed wells. Finally, we offer a cost-effective, accessible protocol enabling the design and fabrication of advanced multi-organ-on-a-chip devices.
Lior Minkowicz, Dagan, Arie , Uvarov, Vladimir , and Benny, Ofra . 2021. Controlling Calcium Carbonate Particle Morphology, Size, And Molecular Order Using Silicate. Materials, 14, 13. doi:10.3390/MA14133525. Abstract
Calcium carbonate (CaCO3) is one of the most abundant substances on earth and has a large array of industrial applications. Considerable research has been conducted in an effort to synthesize calcium carbonate microparticles with controllable and specific morphologies and sizes. CaCO3 produced by a precipitation reaction of calcium nitrate and sodium carbonate solution was found to have high polymorphism and batch to batch variability. In this study, we investigated the polymorphism of the precipitated material and analyzed the chemical composition, particle morphology, and crystalline state revealing that the presence of silicon atoms in the precipitant is a key factor effecting particle shape and crystal state. An elemental analysis of single particles within a polymorphic sample, using energy‐dispersive X‐ray spectroscopy (EDS) conjugated microscopy, showed that only spherical particles, but not irregular shaped one, contained traces of silicon atoms. In agreement, silicon‐containing additives lead to homogenous, amorphous nanosphere particles, verified by X‐ray powder diffraction (XRD). Our findings provide important insights into the mechanism of calcium carbonate synthesis, as well as introducing a method to control the precipitants at the micro‐scale for many diverse applications.
Bruno V.S. Valiate, Queiroz-Junior, Celso M. , Levi-Schaffer, Francesca , Galvão, Izabela , and Teixeira, Mauro M.. 2021. Cd300A Contributes To The Resolution Of Articular Inflammation Triggered By Msu Crystals By Controlling Neutrophil Apoptosis. Immunology. doi:10.1111/IMM.13371. Abstract
Gout is an inflammatory disease triggered by deposition of monosodium urate (MSU) crystals in the joints, resulting in high neutrophil influx and pain. Here, we studied the role of the inhibitory receptor CD300a in the resolution process in a murine model of gout. We found increased CD300a expression on neutrophils emigrated to the joint. When compared to WT mice, CD300a−/− mice had persistent neutrophil influx till 24 hr after MSU injection. This was associated with increased concentration of IL-1$\beta$ and greater tissue damage in the joints of CD300a−/− mice. There was an increase in the percentage of apoptotic neutrophils in the synovial lavage of WT mice, as compared to CD300a−/− mice. This difference was reflected in the decline of efferocytic events in the synovial cavity of CD300a−/− mice 24 hr after MSU injection. A CD300a agonistic antibody was shown, for the first time, to increase apoptosis of human neutrophils, and this was associated with cleavage of caspase-8. In conclusion, our results reveal an important role of CD300a in the control of leucocyte infiltration, IL-1$\beta$ production and caspase-8 cleavage in neutrophils, contributing to the resolution of inflammation triggered by MSU injection.
More >>