Skip Ribbon Commands
Skip to main content
The Na(+)/Ca(2+)-exchanger: an essential component in the mechanism governing cardiac steroid-induced slow Ca(2+) oscillations
Author: Feldmann, T., Shahar, M., Baba, A., Matsuda, T., Lichtstein, D., Rosen, H.
Source: Cell calcium, 50(5), 424-32, 2011
Abstract: Plasma membrane (PM) Na(+), K(+)-ATPase, plays crucial roles in numerous physiological processes. Cardiac steroids (CS), such as ouabain and bufalin, specifically bind to the Na(+), K(+)-ATPase and affect ionic homeostasis, signal transduction, and endocytosed membrane traffic. CS-like compounds, synthesized in and released from the adrenal gland, are considered a new family of steroid hormones. Previous studies showed that ouabain induces slow Ca(2+) oscillations in COS-7 cells by enhancing the interactions between Na(+), K(+)-ATPase, inositol 1,4,5-trisphosphate receptor (IP(3)R) and Ankyrin B (Ank-B) to form a Ca(2+) signaling micro-domain. The activation of this micro-domain, however, is independent of InsP3 generation. Thus, the mechanism underlying the induction of these slow Ca(2+) oscillations remained largely unclear. We now show that other CS, such as bufalin, can also induce Ca(2+) oscillations. These oscillations depend on extracellular Ca(2+) concentrations [Ca(2+)](out) and are inhibited by Ni(2+). Furthermore, we found that these slow oscillations are Na(+)(out) dependent, abolished by Na(+)/Ca(2+) exchanger1 (NCX1)-specific inhibitors and markedly attenuated by NCX1 siRNA knockdown. Based on these results, a model is presented for the CS-induced slow Ca(2+) oscillations in COS-7 cells.
website by Bynet Software Systems